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SUMMARY

This topical report represents the sixth report of a series
of reports to be prepared under NASA Contract NAS 3-8511, Task III,
"Investigation of the Effect of Electrode Materials, Surface

Treatments, and Electrode Spacing on Converter Performance. "

This sixth and last of a series of laboratory-type planar
thermionic converters was of a new design. In this design, the
envelope of the new converter was made entirely of niobium (Nb)
except for two niobium-to-alumina insulating seals, the tungsten
(W) emitter, and a tungsten-25 weight percent rhenium (W-25 w/o Re)

foil supporting the emitter.

This converter had a chloride vapor deposited W emitter
which had a preferred (110) crystal orientation on the surface as
determined by x-ray diffraction. The collector was fabricated by
depositing a 1500 Angstrom (X) layer of molybdenum (Mo) on a Nb

substrate.

The vacuum work function (¢E) of the W emitter was measured
prior to introducing cesium (Cs) into the converter. A value of 5.03
electron volts (eV) was obtained at an emitter temperature (TE) of
2075 to 2300°K. After introducing the Cs but before operation of the
converter, the collector work function (¢_.) was measured. A
minimum ¢c of 1.54 eV was obtained at a ratio of collector tempera-
ture (T.) to Cs temperature (Tcs) of 1.9. The output performance
of the converter was measured with emitter temperatures ranging
from 1650 to 2035°K, Cs temperatures from 573 to 653°K, collector
temperatures from 973 to 1023°K and interelectrode spacings from
59 to 20 mils. Early in testing, the collector and emitter were

inadvertently shorted and the electrodes were separated while the



driving circuit was set to draw several hundred amperes. The
resultant arc produced pits and molten balls on both the emitter
and guard ring that prevented testing the converter at a spacing

less than 5 mils.

The output performance of this converter was very similar
to a converter that used a CVD-W emitter of (110) crystal
orientation and a Nb collector. Post-test analyses of the collector
surface revealed that it was Mo and Nb in about equal quantities.
Thermionic performance indicated that the collector surface

displayed characteristics of Nb.



INTRODUCTION

This work is part of a continuing program to build and
operate thermionic converters with various electrode materials
in order to characterize, evaluate, and identify the most promising
electrode surfaces for converter operation. The design of the test
converter was conceived and standardized in 1963. It permitted an
accurate determination of the electrode spacing and used a guard
ring to accurately define the converter area. The guard ring could
be kept at the same temperature and potential as the collector. The
first six lines of Table 1 list the electrode materials and the spac.:ings
for six converters built according to the 1963 design. The output
power from these converters was consistently high and variations in
output power could be explained by variations in electrode surfaces.
The emitters of these converters were preheated to 2500°C for
1/2 -hour and all other parts of the converter were heated at least
100°C hotter during processing than the operating temperature for

each part.

In 1966, under NASA sponsorship, the program was altered
in two respects: (1) A more elaborate converter was built so that
the electrode spacing of each converter could be varied. (2) A much
more intensive program to characterize the emitters was inaugurated.
The NASA program, covered by Task III of Contract NAS 3-8511,
began with the first variable spaced diode tested --namely, item 7
of Table 1. This report presents the emitter and collector
preparation and the test results for the last variable spaced
converter (item 12, Table 1), The test results are documented in

the references listed in the table.

It is generally agreed by workers in the field that Nb is an

inferior material for thermionic converter collectors. Holland,

(11, 12)

Kay, and Yates report that Mo is superior to Nb as a



Table 1.

Spacing
Emitter Collector (Inches|
{(n Polycrystalline Tungsten( b Ni 0.005
(2) Polycrystalline Rhenium' " Ni 0.005
(3) Polycrystalline Rhcnium(z’ 3.4) Ni 0.002
(4) Polycrystalline Tungston”" > Ni 0.002
(5) Polycrystalline Tungstcn(S) W 0.002
() w-25w/oRe'® Ni 0.005
(7)  Polycrystalline Tungsten' "5 Nb 0.001 1o 0,020%
(8) Vapor Deposited (100) W, (110) Etch'”) Nb 0.001 to 0.020
(9) Vapor Deposited (110) w'19) Ni 0.005
{10$) Vapor Deposited (110) W Nb 0.002 to 0,020
(11 Vapor Deposited (112) to (114) W W + WO, on Nb 0.002 1o 0,020
(12) Vapor Deposited (110) W Mo and Nb 0.005 10 0,020

*This converter did not have a guard ring.



collector material. Nb matches alumina in thermal expansion.
Therefore, for a nuclear-heated cylindrical thermionic converter,
it is desirable to use Nb insulated by alumina for the collector
structure. An obvious solution is to use the Nb for the collector
structure but coat it with a thin layer of Mo to enhance the converter

performance.

The primary objective of this test was to determine the
performance characteristics of a (110) oriented W emitter and a
0
Mo collector. The collector was fabricated by depositing a 1500 A

thick Mo layer onto a Nb structure.



DESCRIPTION OF THE CONVERTER

The emitter for this converter was the same emitter as

(10) It is a W disk 1-inch in diameter

used in item 9 of Table 1.
and 1/4-inch-thick coated on the lower surface with a 0.025-
inch-thick layer of CVD W. After removing the emitter from the
W (110)-Ni converter of reference 10, its orientation was rechecked
by x-ray diffraction. The surface has large crystallites observable
with the naked eye but appears to be almost 100% oriented with the

(110) planes parallel to the bulk surface.

The collector and guard were ground and polished planar
and coated with a 1500 .2 layer of Mo by evaporation in vacuum.
The thickness of the Mo layer was determined by simultaneously
coating a blank glass specimen which was weighed before and after
coating. The thickness was then calculated on the basis of the
weight increase and the total area of the glass blank assuming a

uniform deposition.

In mounting the converter in a vacuum bell jar, the guard
is rigidly mounted on three stainless steel rods. The collector is
forced by springs against the ceramic ring insulating the guard
from the collector. This ring determines the relative height of
the collector and guard. Three movable stainless steel legs are
clamped to the flanges on the large upper Nb piece referred to as
the emitter radiator. The clamps contain sapphire balls that
insulate the emitter radiator from the guard and bell jar base
plate. For a more detailed description of the spacing mechanism,

see NASA CR-1033 (pp. 8-11). (8)

Converters used in the previous tests often developed

vacuum leaks during operation. Most of these leaks developed



in brazed joints between Ni and Mo parts. A new testing vehicle
was designed which uses Al;Oj to Nb insulating seals. The emitter
support and electrical lead is a W-25 w/o Re cylinder with a
0.005-inch-thick wall. The rest of the assembly is Nb. Except
for the ceramic-to-metal seals, the entire assembly is joined by
electron beam welds. Figure 1 is a cross section drawing of the

assembly.

The ceramic pieces for the seals are high purity A1203
washers. The planar surfaces were metallized by a process

(13)

developed by R. H. Bristow. Briefly, a mixture of finely
powdered calcia, magnesia, and A1203 wa s painted and fired onto
the A1203 surface. The resulting surface was electroplated with

a Cu coating. The seal assembly was made by stacking the Nb spinnings
and metallized A1203 washers according to Figure 1 with 1-mil foils
of Cu-37 w/o Au (Melting Point of 10250C) placed between the Nb and
metallized ceramic surfaces. The assembly was held under com-
pression and fired to 1050°C. The Cu-Au foils were made slightly
smaller than the ceramic rings to prevent the braze from running
down the cylindrical surfaces of the ceramics. Cu-37 w/o Au was
used because Cu-Nb forms a liquidus phase at 1125°C and it is

difficult to make a Cu braze just a few degrees lower without

dissolving part of the Nb foils.

The 5-mil-thick, 1-inch-long W-25 w/0o Re cylinder was made
by rolling a foil and seam welding a butt joint. This cylinder was
welded to the W emitter and then to the large radiator section.
Therefore, three practice welds were made between the W-25 w/o
Re foil and Nb and heat cycled 25 times each from room temperature
to 1000°C. They remained vacuum tight. However, after the first
converter of this design was assembled, cracks developed in the
W -Re foil below the weld to Nb. A second emitter and W-25 w/o
Re foil assembly was annealed to 1200°C in wet hydrogen (H,) and
then to 1600°C in dry H,. This foil remained vacuum tight after
welding to Nb.
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CONVERTER OPERATION

Before introducing the Cs, the work function of the emitter
was measured. It remained constant at 5.03 eV from 2075°K to

2300°K.

After introducing the Cs but before operation as a con-
verter, the work function of the collector was measured by satura-
tion emission with the collector at 800 or 820°K and varying the Cs
reservoir temperature from 409 te 493°K, Figure 2 shows a plot

of pversus TC/TCs Prin 15 1.536eVat T-/T = 1.9.

The output performance of the converter was measured
with T, from 1650 to 2035°K, T from 573 to 653°K, T from
973 to 1023°K and spacings from 5 to 20 mils. The individual J-V
curves obtained for these parameters are presented in Appendix A,
Early in testing this converter, the collector and emitter were
inadvertently shorted. The electrodes were separated while the
driving circuit was set to draw several hundred amperes. The
resultant arc produced pits and balling on both the emitter and

guard. The balling prevented testing the converter at a spacing

less than 5 mils.

The highest spot on the guard was 3.5 mils above the
surface. The point on the emitter was 1.2 mils high., After the
arc, the converter was releveled so that as it was brought together,
the leveling legs were equally sensitive in producing short circuits.
Therefore, the data were taken with the emitter tipped relative to
the collector. A spacing reported as 5 mils probably varied from

4 to 6 mils from one side to the other of the collector.

The output performance appeared very similar to converter

#10 in Table 1 which had a similar emitter but a Nb collector,
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This similarity is illustrated in Figures 3 and 4. These data
indicate that the collector surfaces of the two converters are
essentially the same, assuming that there are no differences

in the emitter characteristics.

Because this converter with the Mo on Nb collector had
the same output as a converter with a Nb collector and it was
anticipated that the Mo on the collector would improve the output
performance, it was suspected that Nb had diffused to the surface
during the outgassing of the guard and collector which took a few
hours at 900°C. The converter was taken apart and the collector
surface was analyzed with an Auger electron spectrometer. The
results revealed that the surface was Mo and Nb in about equal
quantities. Data from N. L. Peterson(l4) and Birks and Seebold(ls)
for diffusion of Mo and bulk Nb indicates that the Nb should not have
diffused to the surface so quickly; however, recent measurements
by J. R. Young of diffusion of Nb into a Mo evaporated layer give
a diffusion coefficient larger by a factor of 5. Perhaps the evaporated
Mo layer is not densely packed and Nb diffuses more rapidly through

it than was anticipated.

The thermionic performance of a diode is highly temperature
dependent. It is, therefore, important that the emitter temperature
be well known. A calculation of the emitter thermal gradients

occurring in these experimental converters is included as Appendix B.
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CONCLUSIONS

There are two conclusions resulting from this work:
(1) the performance results are for a mixed Mo and Nb collector
surface, and (2) more work is required to determine a satisfactory

method of applying Mo to a Nb structure for use as a collector for

a long-life converter,
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APPENDIX B
CALCULATIONS OF THERMAL GRADIENTS IN EXPERIMENTAL
THERMIONIC CONVERTER EMITTERS

V. C. Wilson
General Electric Research and Development Center
Schenectady, New York

These calculations pertain to the emitters in the plane
parallel thermionic converters listed in Table 1 that were built
and tested at the General Electric Research and Development

Center.

Figure B-1 is a cross section drawing of one of these
emitters. It is 1 inch in diameter and 1/4-inch thick. Heat is
put into the top surface by electron bombardment. Heat is removed
from the bottom surface by radiation, Cs vapor conduction and
electron and ion cooling, Also, heat is removed from the lower
circumference by a thin refractory metal foil that serves as part
of the cesium envelope, the emitter support and electrical lead.
The temperature is measured by optical pyrometry of a black-body
cavity that is shielded from receiving radiation from the hotter
filament of the electron bombardment system. The path length of
the heat flow is measured from the center of the black-body hole to

the emitter surface,

The electron bombardment filament is wound with turns
closer together at the outer edge to compensate for the heat
removal by the supporting foil. Some measurements of the emitter
temperature distribution have been published. (B1) Over the area
of the collector, the emitter has a constant temperature within
5°C or less. With tungsten emitters, the temperature decrease

to the edge is 25°C or less.

These calculations are for a correction to the emitter

temperature due to the thermal gradient in the emitter. The
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correction is less than 3%, and so a 20% error in the estimate
would be an error of less than 0. 6% in the emitter temperature.
Therefore, no effort was made to estimate the radial flow of the
heat to the edge of the disk., It was assumed that the heat flow
from the depth of the center of the black-body cavity to the emitter

surface was perpendicular to the emitter surface and of uniform

density.

The calculations were based upon the sum of the heat

removals from the emitter which were:

(1) Heat flow down supporting foil,
(2) Radiation,

(3) Electron and ion cooling (function of current density),
and
(4) Cs vapor conduction.
(1) Heat Flow Down Supporting Foil

The heat that is removed by the supporting foil is radiated
from a large metal structure. In an auxiliary test while outgassing
one of the series (item 8, Table 1), the temperature of the radiator
where it is joined to the foil was measured as a function of emitter
temperature. From these data one can determine the AT in the foil
at each emitter temperature, The heat flow was calculated from
the simple equation Q7 = A K AT // without corrections for radiation

to or from the foil.

(2) Radiation from the Emitter Surface

For heat radiated between two parallel planes, an effective

emissivity, €' = (1/eg + 1/e — l):l may be used B?) in the expression:

Q.=¢€0(Tg " =T
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where €c is a function of Tg and €, is a function of\’TETC. Past
experiences have indicated that.well polished surfaces give an
effective emissivity of ~0.16. Therefore, this value was used in

these estimates.

(3) Electron and Ion Cooling

This term is a function of current density. A shunt was
placed in the electrical lead to the emitter and the current
determined by measuring the voltage across the shunt with a
thermocouple voltmeter. This reads the effective heating of the
current--i, e., the sum of the d.c. component and the root mean
square of the a.c. component. Actually, one should have the d. c.
plus the simple average of the a.c. component. The root mean
square is 10% higher than the average. A Darsinval movement
can be calibrated to read the average of a sign wave, but it ignores
the d.c. component. Since in most of a thermionic converter testing
program, the d.c. component is in the order of half the current, it

was found best to use the thermocouple meter.

Dr. D. R. Wilkins of General Electric's Nuclear Thermionic
Power Operation has developed a set of curves [rom computer
calculations of the cooling by electrons and ions for various emitter
temperatures, collector temperatures, current densities and Cs

pressures.

Throughout a testing program for NASA, in order to com-
pare each converter with those previously tested, emitter tempera-
tures of 1665, 1770, 1865, 1962, 2057, 2153, and 2250°K were used.
Wilkins made his calculations for emitter temperatures at each
hundred degrees. Estimates of the electron cooling versus current

density were made by interpolating between Wilkins' values.

(B3) (B4)

Calculations made using the data from Houston and Lawrence

gave essentially the same results.
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(4) Cesium Conduction

The heat removal from the emitter by the Cs vapor is
independent of the current density and primarily a function of
the emitter temperature and Cs pressure. Data from Kitrilakis

and Meeker(BS) were used.

Having determined the sum of the cooling terms, the total
heat flow per unit area through the emitter was used to calculate
the thermal gradient in the emitter, AT. These values are shown
in Figure B2, which plots AT versus metter readings for the
emitter temperatures used. The cesium conduction correction is

given in the table on the figure.

While operating a converter under test, the conditions for
test, TE, Tc, TCS’ Load Resistance and a.c. drive were set.
Then, the thermocouple meter was read. Using Figure B2, one
could determine how much to increase the apparent black-body
cavity temperature of the emitter to have the emitter surface at

the desired temperature.

42



1547

AT -°K

70

60

50

40

30

20

10

—_—2250°K
| 2153°K
/////f 2;)57"::
| : [962°
| ]
// //?/wew
e T ok
/ /?// ~__—le65°K
J/A//é;
/ 7 % ] Cs CORRECTION
/// Tes 1673 1770 1865 1962 2057 2153 2250
7 280 05 0.6 0.6
/ A B ey
EMITTER AT 340 1.0 12 12 I3 15 16 I.7
360 14 14 15 16 17519
| 380 20 2.2

Figure B2, CORRECTION TO EMITTER TEMPERATURE AS A FUNCTION OF A.C.
METER READING

-
-

10 20 30 40 50 60 70 80 90
METER READING (0-20 Ma) SHUNT 0.050V=50A



REFERENCES

Wilson, V. C. and Lawrence, J., Adv. Energy Conv. 4,
201, Figure 4 (1964).

Block, ¥. G., Hatsopoulos, G. N., Wilson, V. C.,
Proc. Therm. Conv. Specialists Conf., San Diego,
p. 379 (1965).

Houston, J. M., Therm. Conv, Specialists Conf.,
Gatlinburg, p. 214 (1963).

Lawrence, J., Therm. Conv. Specialists Conf.,
Cleveland, p. 291 (1964).

Kitrilakis, S. and Meeker, M., Adv. Energy Conv., 3,
59, (1963).

44

NASA-Langley, 1970 — 22 E=-5810



